Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

4

ELSEVIER International Journal of Solids and Structures 43 (2006) 2037-2049

Slip zone length at the edge of a complete contact

C.M. Churchman, D.A. Hills *

Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, United Kingdom

Received 9 December 2004; received in revised form 28 June 2005
Available online 8 September 2005

Abstract

In this paper we solve for the length of the slip zone emanating from the edge of a 90° semi-infinite contact which is
nominally adhered to an elastically similar half-plane but has a small region of slip close to the edge. The solution is
found using the monolithic three-quarter plane as the basic solution, which incorporates the adhered asymptotes as
an ‘outer’ solution, and using a distribution of dislocations to quantify the region of slip, and also to define an inner
slipping asymptote. The solution is applied to a finite square block pressed onto an elastically similar half-plane,
and compared with a numerically obtained solution.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Complete contacts do not often arise in engineering practice, but one example is the spline connection
between split shafts in a gas turbine, where the two mating parts are conforming involutes with abrupt
edges. The problem of devising a procedure for design against fretting fatigue in these assemblies has
prompted an investigation of the qualities of the near-edge tractions-state and attendant state of stress
in complete contacts. Because complete contacts invariably have singular states of stress adjacent to the
contact edges, asymptotic procedures are valuable in capturing the local pressure and state of stress. We
have recently considered slipping contacts by using the Gdoutos and Theocaris (1975) and Comninou
(1976) solutions, and it is clear that, when the coefficient of friction is sufficiently high to maintain adhesion,
the classical Williams monolithic wedge solution (Williams, 1952) may be employed to represent the contact
pair (Mugadu and Hills, 2002). However, although this simple and straightforward application of the
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asymptotic solutions is useful, it does not help track out the complete sequence of stress states if the contact
is subject to cyclic shear. Mugadu and Hills (2003) examined a problem suffering this loading history for the
case when one contacting body is rigid and the other, capable of idealisation as a half-plane, is incompress-
ible. However, this particular problem has the unique property that the order of singularity associated with
the two adhered singular eigensolutions and that for the slipping eigensolution are all the same (square root
singular), and this gives rise to a straightforward stick-slip regime not exhibited by contact between elasti-
cally similar bodies.

In this paper, we describe one step in developing a full description of the contact-edge state of stress
when a complete contact is subject to constant normal load and oscillatory shear: we shall examine the case
when the coefficient of friction is insufficient to maintain adhesion adjacent to the contact edges, but the slip
zones present are small. This affords a description of the slip zone in terms of an outer asymptotic solution
which itself represents adhesion.

2. Properties of asymptotes

If the contact edge is adhered the local state of stress may be described by Williams’ asymptotic method,
a full description of which is given by Barber (1992). If the internal angle of the contact adjacent to the edge
is ¢, and ¢ < m, there are two independent singular eigensolutions provided that ¢ > 77.4°. These uncouple
along the ‘notch’ bisector, see Fig. 1(a), and it is usual to scale the base solutions so that, along this line, the
circumferential stress associated with the more singular eigensolution is unity, and the shear stress associ-
ated with the weaker but still singular eigensolution is also unity. It is preferable when these solutions are
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Fig. 1. (a) General wedge geometry of angle ¢, (b) sign convention for the coefficient of friction, f: positive for slip of the wedge away
from its apex (inwards right relative to the half-plane).
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employed in contact problems to re-scale the base solutions so that the contact pressure arising along the
interface, represented by each term, is unity, i.e.,

plr) = K K on 0= B2 0) (1)
where A;, Ay are given by the solutions to the following two equations:
Jrsin(n + @) + sin((n + ¢)4;) = 0, Jasin(m + @) — sin((n + @) Ay) = 0, (2)

which for the case of a 90° punch on a half plane, ¢ = n/2, and so A; = 0.5445 and A;; = 0.9085. The gen-
eralised stress intensity factors, KV, K%, are found by collocating the solution to whatever finite problem is
being studied, whilst the corresponding shear stress is given by

alr) = Kir gl + Kl o)

where the functions g',, gl are provided by the eigenvectors to Williams® problem. For the example case of
¢ = 1/2, we have g', = 0.543 and g!}, = —0.219. It is not possible to provide all the algebra here, for which
the original papers should be consulted.

If the contact edge is slipping the Gdoutos and Theocaris (1975) and Comninou (1976) solution applies.
The coefficient of friction is denoted f, chosen to be a positive quantity if the contact is slipping inwards
relative to the half-plane, and a negative quantity if the contact is slipping outwards. This ensures that po-
sitive shearing tractions arise (corresponding to inward slip) when the coefficient of friction is positive and
the normal stress is compressive/negative, and S(x) = —fN(x), see Fig. 1(b). The local traction distribution
is still power order in form

pl) = L — e, @)
-/

but with a solitary singular term, and the eigenvalue /, is shown in Fig. 2. The plot includes the values of the
two singular eigensolutions for the adhered problem, A;, Ay, for comparison. In the region of relevance here,

—f<0.543, we note that A; < 3 < .
Now, it will be noted that, if the contact is truly complete and also adhered, as the contact edge is ap-
proached (r — 0) the solution is dominated by the more singular term, and hence, to preserve a compressive
contact pressure we require that K7 < 0. The direction in which slip is allowed is also restricted by the form

[0 15 ] =t

0.1 0.2 03 0.4 05 gl, el

Fig. 2. Plot showing /; as a function of the coefficient of friction, f; for slip away from the apex (i.e., in the negative f direction). Also
included are the A;,A;; values for the adhered case.
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of the adhered asymptotes. As we define ¢(x)/p(x) = —f and we know that within the asymptote,
q(x)/p(x) = g', (as we approach the apex, x — 0), where g!, = +0.543 we must have /<0, implying that
slip must be outwards (in the negative f direction as defined in Fig. 1(b)), regardless of the combination
of applied loads. It also means that the shearing traction distribution at the edge is dominated by the lead
singular term, and hence slip will be prevented if |f| > g',, i.e., for a punch with a right-angle edge, if
|f] > 0.543. If the coeflicient of friction is lower than this the contact edge will certainly slip, and in this
paper we shall be concerned with contacts where the coefficient of friction is less than the critical value
for adhesion.

3. Example problem

Complete contacts inevitably require elasticity formulations appropriate to finite bodies, and hence are
not amenable to closed form solution. Further, it is formally impossible to separate the contact problem
from the load path distribution in the body as a whole, and this means that all contact pressure distribu-
tions are geometry-specific. With this in mind we studied the simplest possible complete contact using the
finite element method, and this is shown in Fig. 3: it depicts an elastic square of side 2a pressed into an
elastically similar half-plane by uniform pressure on the upper surface equivalent to a normal contact load
P, and where a shearing force, Q, in the plane of the interface, may also be developed. The interface has a
coefficient of friction, /. When a normal load alone is applied, if || > g,, the entire punch face sticks. How-
ever, if this inequality is not satisfied the central region of the contact sticks whilst slip zones, of opposite
sign, attached to the edges, appear. These are of fixed extent. The problem has similarities with the cele-
brated Spence problem (Spence, 1973) of contact between a flat-ended rigid indenter and an elastic half
plane, but here the reason for the development of tangential slip displacement is the different domains rep-
resenting the contacting bodies, rather than elastic mismatch.

If a monotonically increasing shear force is now imposed, one slip region, viz. that attached to the trail-
ing edge sticks, whilst the other increases in size. Considering, first, the effect of a normal load alone, we
note that, for values of the coefficient of friction close to g',, the slip regions are relatively small in extent.
It is also quite hard to find their size explicitly, as both components of traction become power order singular
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Fig. 3. Geometry of the FEM problem: Square block of side 2a pressed onto an elastically similar half-plane with (a) pressure applied
and (b) shear force applied.
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in these neighbourhoods, and it is difficult to achieve convergence using the finite element method. The
question arises whether an alternative approach, of more widespread applicability, is possible, if the slip
zones are indeed small in size compared with the region in which the singular terms associated with adhe-
sion dominate the problem. It is therefore proposed that a self-contained solution for slip adjacent to the
edge of a contact between a semi-infinite wedge (which may, as here, be of internal angle n/2 radians, and
hence a quarter plane), is pressed into a half-plane. This would imply that the input variables to the prob-
lem would be the generalised stress intensity factors, K7, K%, together with the coefficient of friction, f. Note
that, in order for the contact to be maintained right up to the wedge-edge, we require K{ < 0, Eq. (1). The
actual generalised stress intensity factors for the problem under consideration, assuming complete adhesion,
were found from the finite element output, and are given by

Koah! _[—0.157 0.179]{P/2a} 5
Ko [ | -0.130 —0.274] 0/2a |

4. Formulation

The problem to be solved within the context of a semi-infinite asymptote, is shown in Fig. 4. It consists of
an elastic quarter plane, pressed onto an elastically similar half plane, and possibly subject to an external

N LL L L Ll L
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Fig. 4. Geometry of three-quarter plane slip zone, (a) showing slip zone extent, (b) showing dislocation distribution along x-axis.
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shear. The majority of the interface, save for a small region adjacent to the contact corner, is adhered. The
loading is represented by the first two (singular) terms of a Williams asymptotic expansion for a notch
forming a three-quarter plane, but written down so as to give emphasis to the contact interface (Egs. (1)
and (3)). The expressions for p(x), ¢(x) implied by these equations are true at significant distances from
the corner, i.e., x > ¢ (which are still small compared with other dimensions of the body), but there is a
region, of initially unknown extent (c¢), where slipping occurs. The solution is found by distributing glide
dislocations (see Hills et al., 1996) along the interface within this interval, in order to enforce the friction
law, i.e.,

S(x)=—fN(x) 0<x<c

< —fN(x) x>c, (6)
where the direct and shear tractions, N(x), S(x) are given by
- _ 2u ¢
N(x) = K(I))C/ll Ty K?IX;'" I+ m /0 B (E)F yy(x, €)d¢, (7)
21 ¢ 1
— KOGl =l 4 0 1 - / B.(&)|F..,
S(X) 180X + n8o% + TC(K 4 1) 0 (g) ««}(xv 6) +x _ i dé, (8)

u is the modulus of rigidity, x Kolsov’s constant, B.(¢) = db,/dx the dislocation density, and Fju(x, ¢) the
influence function connecting stress component g;(x) due to a dislocation b/&), present on the projection
line of a three-quarter plane. Details of the derivation of these functions are given in Churchman et al. (in
press), and a summary of the functions given in the appendix. Substituting the two integral representations
into the friction law, Eq. (6), leads to the following Cauchy singular integral equation for the unknown dis-
location density:

Ji—1 =1 ¢
ceea(3) +ure(f) + [ BORUrog=0 fro<ise o)
dy do 0
where
1
Fr(f,x,¢) :foyy(x’ &) + Fry(x, ) +fo’ (10)
~ 2
B.(¢) = —L B(£) (11)

n(k+ 1) K?dél_l ’

and

KO\
dy = —‘) . 12
o= (& (12)

The last quantity, d, is particularly noteworthy as it indicates that the problem has an inherent length
scale, introduced by dint of the two generalised stress intensity factors having different units, i.e., the units
of K} are [FL~""*)] and those of K?, are [FL~"**1)]. Therefore, as d, represents the only length dimension in
a semi-infinite wedge solution, it is appropriate to normalise coordinates with respect to this value. Note
that its magnitude depends directly on the two stress intensity factors, and therefore on the loading mix,
but also (via A; and Ayp) on the geometry. Here, because we are restricting attention to the case of a punch
having edge angle nn/2, A;; — Ay = 0.364, but if a punch with larger interior edge angle were being considered
this difference would be rather smaller. Let

x c 4

¥ = — = — A:— 13
= Tar ¢ o’ (13)



C.M. Churchman, D.A. Hills | International Journal of Solids and Structures 43 (2006) 2037-2049 2043

so that the integral equation becomes
(f + &)X+ (f + gy + / B(OF(f,%,&)dé=0 for0<x<e, (14)
0

and carry out a further stage in normalisation, to place the integral over the standardised range [—1, 1], by
letting

s ¢
;%:%(m— 1). (16)
This gives

+1
/ EX(M)GT(f,U,M)dH
-1

-1 ) AN -1
- —(f+gf,0)<§) (w+ 1" = (f+¢b) G) (w+ )" for —1<v<+1. (17)

5. Solution

The first step in the inversion procedure is to prescribe the fundamental form of the solution. We expect
a smooth transition from slip to stick, and therefore bounded behaviour of the dislocation density as
u — +1, whilst at the corner, as u — —1, the state of stress varies as x»~!, i.e., it is singular in character
(but not square root singular: /g is given in Fig. 2). Standard procedures for inversion of Cauchy integral
equations, derived from the Riemann—Hilbert procedure, require the exponents of the end point behaviour
to add up to —1, 0, 1. Here, the equation has a generalised Cauchy kernel, and so, strictly speaking, the
Riemann-Hilbert procedure does not apply, and hence the exponents do not have this property. Neverthe-
less, experience has shown that convergence can usually be readily achieved, even when the order of singu-
larity is not precisely matched. We shall therefore choose a fundamental function which does assume square
root singular behaviour when u — —1. The discrepancy between the actual order of the singularity and this
assumed form is smallest when —f — g, and hence the solution developed converges rapidly if —/> 0.4,
so that 4;—1 < —0.4. An alternative fundamental function, w(u), and hence quadrature, would be needed
for lower values of |f] (where A; — 1 is very different from —0.5) but here the slip zone is so large that the
hinterland is no longer dominated by the K}, K field, and so the issue does not arise. We therefore let

B.(u) = p(u)w(u),

where

1 —u
w(u) = Hl—l—u' (18)

A numerical inversion is needed, and the appropriate quadratures are described in Erdogan et al. (1973)
or Conte and De Boor (1972). The integration points, #; and the collocation points v, are given by

2i )
U; = COS (nm) fori=1,...,n, (19)

2k — 1
vy = COS <n2n+1) fork=1,...,n, (20)
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and the integral equation itself becomes

" 2n(1 — w;)
- T—HGTU’ vkaui)¢x(“i)
~ /11*1 . ~ /111*1
= —(f+g£9)(§> (vr + 1)“" —(f +g{{))(§> (vr + 1)*"" for k=0,...,n. (21)

This represents n equations for the » unknowns ¢ (u;), but additionally we need to determine the extent
of the slip region, ¢. Because we have no side condition we must rely on checking the results to ensure that
the following inequalities are satisfied:

S(x) < |—fNx)| forx>c,

22
sgn(h(x)) = sgn(S(x)) forx < e, (22)
where /(x) is the tangential displacement or slip displacement:
1
ho = [ B4 (23)

A further known condition, which, in practice, has considerably assisted in establishing the slip interval,
is that the traction distribution adjacent to the contact edge (X < ¢) must display a form given by the
slipping Comninou asymptote (Eq. (4)), and hence N(x) must vary like x*~! if x < ¢. This also provides
calibration for the slipping asymptote at the contact edge, i.e.,

N(x)

K, = as x/c — 0, (24)

X%~
or, in order to provide a more rational normalisation for the slipping stress intensity,
K Nx) 1

b = _ as x — 0. 25
Ko KV 3! (25)

6. Results

The primary output is the size of the slip zone, ¢ for a given f. Before presenting the results from solving
the integral equation we note that an approximate solution for the stick-slip boundary may be found from
the adhered asymptotic solution alone, by determining the distance over which the friction law is exceeded,
and which will be denoted by c¢,. Setting S(co) = —fN(cp) we find that

i1 -1

(f+g£o>(57‘;) +<f+giz>(§—‘;) o, (26)
o _ [ (fHg)\ A

a={-Grm" 7

In Fig. 5 the first estimate of the slip zone (co/dp) is shown, together with the numerical solution ¢ (=
c/dy) as a function of the coefficient of friction. It will be seen that the true slip distance, ¢, is a constant
multiple of approximate solution. Specifically:
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Fig. 5. Plot showing both {‘72 and imasa function of the coefficient of friction, f, for slip away from the apex (i.e., in the negative f
direction).
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Fig. 6. Plots of the tractions N(x), S(x) for the asymptote derived, together with the adhered inner solution and slipping asymptote
adjacent to the edge. The two figures are equivalent, but (a) is the raw tractions and (b) their ratio which emphasises the difference
between them. f= —0.4.
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This means that we may produce a crisp formula for the true size of the slip zone for a 90° wedge pressed
onto a half plane:

1
) K1
=24 ——— 202 2 . 28
¢ { (f—i—g%) K?I @)

Fig. 6 displays the traction distributions within the neighbourhood of the asymptote, normalised as
Ké\; (:1)—1 and K;;?*" We also plot on the figure the adhered ‘asymptote to the asymptote’, i.e., the traction dis-
tributions implied by the Williams solution for x/c >> 1. It should be noted that, as the edge of the contact is
approached, i.e., x/c < 1, the behaviour moves towards the Comninou sliding asymptote. The gradient
here has already been used in the numerical part of the solution, and we may collocate the value of the gen-

eralised stress intensity factor, K, from the numerical results. It is found that

Ky = y(f)K{dg ", (29)
0 is()—A
K A4
— (KD (—) , (30)
KII

where 7(f) is given in Fig. 7 and /4(f) is given in Fig. 2. As a useful check, we see that if we set /' = —g!, then
Js(f) = 21 and y(f) = 1 giving the expected result that K, = K?, i.e., there are no slip zones and the contact
remains adhered everywhere. Therefore, there is a smooth transition between slip at the edge and adhesion
at the edge. We may also look at the maximum of the y(f) curve and we see that it peaks at = —0.09654

and that at this point % =1 and therefore we have: K, = 1.98,/K{KY,.

7. Application to example problem

The results found may be applied, as an example, to the square pad pressed onto a half-plane, treated by
the finite element method, and described in an earlier section. In order to apply the recipe of the previous
section, we note that the input parameters are f, K! and K. The latter two may be calibrated, for a given
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geometry, with %, provided that there are no other slipping regions, the calibrations for K} and K, found
earlier may be used. Thus (28) and (29) become, for this particular geometry,

¢ _ (f +0.543) (=0.157 4 0.179(Q/P)\ 7
a 2'4{_ (f —0.219) (—0.130 - 0.274(Q/P)> } ’ 31)
and
_/'-%(/);;1
K@D = y(f)(~0.157(P/2a) + 0.179(0/2a)) (:81;7) * 8;2% i, ;) o (32)

0.06 &
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Fig. 8. ¢as a function of f% for |f] = 0.45 and |f] = 0.5 showing the correlation between the prediction derived from the asymptotes and
the FEM output. The latter includes error bars as the output has an oscillatory component.
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Fig. 9. Plot showing the slipping stress intensity factor, K, as a function of the loading on the finite problem, /%, for coefficients of
friction, |[f| = 0.4, 0.45 and 0.5.



2048 C.M. Churchman, D.A. Hills | International Journal of Solids and Structures 43 (2006) 2037-2049

Fig. 8 displays the size of the slip zones ¢/a predicted by the finite element method," as a function of the
shearing force, Q/fP, for constant coefficients of friction (when Q > 0 the results apply only to the growing
slip zone of course). Using the calibration for the ‘full stick’ generalised stress intensity factors given above
the size of the slip region was found. These predictions are included on the figure and, as expected, show an
excellent correlation with the finite element (slipping) solution when ¢/a < 1, when the effect of the presence
of the opposite free surface of the punch is negligible. For completeness, plots of the slipping stress intensity
factor given in Eq. (32) have been included for this particular calibration in Fig. 9.

8. Conclusion

In this paper we show how the edges of sharp contacts, where the interfacial coefficient of friction is less
than a critical value may be characterised by two stress intensity factors appropriate to adhered behaviour.
This permits the size and tractions within an embedded slip region to be found accurately (providing that
the coefficient of friction is fairly close to the critical value, g!), i.e., 0.4 <|f| <0.543 and for low Q/fP). The
scheme may be employed for contacts with a range of edge angles, but is here developed for the case of a
right-angle pad edge.

Appendix

Influence functions. The stress, o, at a position x for an edge dislocation by at a distance ¢ from the ori-
gin of a three-quarter plane (with the term corresponding to a dislocation in an infinite plane omitted)

1 :
Fkij(%) :W;Gﬂ l—c&-’é

m

t Co C C, Cs S o Cm
Fy, 1.45 —0.8416 3.602 —3.146 0.6288 0.2427
Fyyy, Fyyy 1 —0.3650 —0.1416 —3.942 3.450 —0.9986
Fyxy 1.45 -0.2726 —1.016 2.333 —0.3687 0.6757
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